Three Scientists Win 2016 Nobel Prize for Building ‘Molecular Machines’

Three scientists who developed the molecular machines have been named as the winners of the 2016 Nobel Prize.
Stoddart, Sauvage, and Feringa (UCLA/CNRS/University of Gronigen)
Jean-Pierre Sauvage of the University of Strasbourg, France , J. Fraser Stoddart of the Northwestern University in Illinois, United States and Bernard L. Feringa, of University of Groningen, the Netherlands were announced this morning as joint winners of the 2016 Nobel Prize in Chemistry.
The Royal Swedish Academy of Sciences said the trio were recognised “for the design and synthesis of molecular machines” The three scientists developed the molecular machines, the world’s smallest machines:A tiny lift, artificial muscles and miniscule motors.
”They have developed molecules with controllable movements, which can perform a task when energy is added,” said the Academy in the announcement.
”The development of computing demonstrates how the miniaturisation of technology can lead to a revolution. The 2016 Nobel Laureates in Chemistry have miniaturised machines and taken chemistry to a new dimension.”
The first step towards a molecular machine was taken by Jean-Pierre Sauvage in 1983, when he succeeded in linking two ring-shaped molecules together to form a chain, called a catenane. Normally, molecules are joined by strong covalent bonds in which the atoms share electrons, but in the chain they were instead linked by a freer mechanical bond. For a machine to be able to perform a task it must consist of parts that can move relative to each other. The two interlocked rings fulfilled exactly this requirement. Sauvage is now 72 years old.
The second step was taken by 74 year-old Fraser Stoddart in 1991, when he developed arotaxane. He threaded a molecular ring onto a thin molecular axle and demonstrated that the ring was able to move along the axle. Among his developments based on rotaxanes are a molecular lift, a molecular muscle and a molecule-based computer chip.
Bernard Feringa,65, the youngest of the three, was the first person to develop a molecular motor; in 1999 he got a molecular rotor blade to spin continually in the same direction. Using molecular motors, he has rotated a glass cylinder that is 10,000 times bigger than the motor and also designed a nanocar.
2016’s Nobel Laureates in Chemistry have taken molecular systems out of equilibrium’s stalemate and into energy-filled states in which their movements can be controlled. In terms of development, the molecular motor is at the same stage as the electric motor was in the 1830s, when scientists displayed various spinning cranks and wheels, unaware that they would lead to electric trains, washing machines, fans and food processors.
Molecular machines will most likely be used in the development of things such as new materials, sensors and energy storage systems.


Please enter your comment!
Please enter your name here